GCSE (9–1) Physics B (Twenty First Century Science)
J259/02 Depth in physics (Foundation Tier)
Sample Question Paper

Date – Morning/Afternoon
Time allowed: 1 hour 45 minutes

INSTRUCTIONS
• Use black ink. You may use an HB pencil for graphs and diagrams.
• Complete the boxes above with your name, centre number and candidate number.
• Answer all the questions.
• Write your answer to each question in the space provided.
• Additional paper may be used if required but you must clearly show your candidate number, centre number and question number(s).
• Do not write in the bar codes.

INFORMATION
• The total mark for this paper is 90.
• The marks for each question are shown in brackets [].
• Quality of extended responses will be assessed in questions marked with an asterisk (*).
• This document consists of 20 pages.
Answer all the questions.

1 Rob is experimenting with water waves. He uses a wave generator to create waves at different wavelengths and frequencies. Below are diagrams showing the waves he produced. Each line represents a wave viewed from above.

First waves produced Second waves produced

(a) Fill in the gaps below to explain how the wave has changed.

(i) The wavelength of the second wave produced is than the first wave. [1]

(ii) The frequency of the second wave produced is than the first wave. [1]

(b) The image below shows the second wave produced but seen from the side

Use data from the diagram above to calculate the amplitude and the wavelength of the water waves.

Show your working.

amplitude = m wavelength = m [3]
(c)
(i) Rob times the waves as they pass in front of him.
He finds that 5 waves pass him in 10 seconds.
Calculate the frequency of the wave.

................. Hz [2]

(ii) Using your answers to parts (b) and (c)(i) calculate the speed of the wave.
In your answer use the equation:
\[\text{wave speed} = \text{frequency} \times \text{wavelength} \]

................. m/s [2]
2 Michelle draws a diagram of the parts of the electromagnetic spectrum.

(a) She misses out some parts.

<table>
<thead>
<tr>
<th>smallest</th>
<th>X-rays</th>
<th>ultraviolet</th>
<th>visible light</th>
<th>microwaves</th>
<th>biggest</th>
</tr>
</thead>
</table>

(i) Add the missing parts of the spectrum to the above diagram.

(ii) Going from left to right, what property is increasing in the diagram?

Put a ring around the correct answer.

energy frequency wavelength wave speed

(b) Different parts of the electromagnetic spectrum are used for different purposes.

Draw straight lines to link each part of the electromagnetic spectrum to its use.

<table>
<thead>
<tr>
<th>Part of the electromagnetic spectrum</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-rays</td>
<td>to produce images of bones</td>
</tr>
<tr>
<td>microwaves</td>
<td>to carry information along optical fibres</td>
</tr>
<tr>
<td>infra-red</td>
<td>to carry satellite signals</td>
</tr>
</tbody>
</table>
3 This question is about astronomy.

(a) The statements below are all about the planets in our solar system. Some of the statements are true and some are false.

Put a tick (✓) in the correct box after each statement.

<table>
<thead>
<tr>
<th>Statement</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>All planets are the same size.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Sun’s gravity keeps all the planets in their orbits.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) The following statements describe how the solar system formed. They are not in the correct order.

In the spaces below, put down the order in which they should come. Two have been done for you.

1 and denser areas of the dust cloud condensed into the planets.
2 was pulled together by gravity
3 A large cloud of dust and gas in space
4 when fusion reactions started, and the Sun was born
5 the gas was compressed and heated up
6 until the centre part had a temperature of millions of degrees

The correct order is:

3
......
......
......
......
1

[2]

[4]
(c)* In the 1920s, astronomer Edwin Hubble made observations of the light coming from many galaxies.

Hubble’s observations made other scientists accept a new theory about how the Universe began.

Describe what galaxies are, and how Hubble’s observations of red shift led to the idea of an expanding Universe.
4 This question is about energy transfers in electrical appliances.

(a) The plates on the back of three electrical appliances are shown below.

<table>
<thead>
<tr>
<th>Appliance</th>
<th>Power (kW)</th>
<th>Voltage (V)</th>
<th>Current (A)</th>
<th>Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.0</td>
<td>230</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>B</td>
<td>800</td>
<td></td>
<td>1.2</td>
<td>50</td>
</tr>
<tr>
<td>C</td>
<td>2.0</td>
<td></td>
<td>3.5</td>
<td>230 – 240</td>
</tr>
</tbody>
</table>

(i) Calculate the number of kWh of energy transferred by appliance A if it is on for 195 minutes. In your answer use the equation: energy transferred = power x time

\[\text{energy transferred} = 2.0 \times 195 \times \frac{1}{1000} \text{kWh} \]

\[3.9 \text{ kWh} \] [3]

(ii) Calculate which appliance (A, B or C) takes the biggest electric current from the mains power supply.

\[\text{current} = \frac{\text{power}}{\text{voltage}} \]

\[\text{current}_A = \frac{2.0}{230} = 0.0087 \text{ A} \]

\[\text{current}_B = \frac{800}{1.2} = 666.67 \text{ A} \]

\[\text{current}_C = \frac{2.0}{3.5} = 0.571 \text{ A} \]

\[\text{current}_B \]

[4]

(b) A householder heats water with an electric heater. The water is then stored in a large storage tank until it is needed. If the water is not used for some hours, it will cool down and the electric heater must be put on again.

Suggest and explain one way in which the householder can reduce the energy wasted in this way, and so save money on the electricity bills.

\[\text{One way} \]

[2]
(c) The cost of electricity is 16p per kWh. Appliance C transfers 3.2 kWh when on for 4hrs. Calculate the cost in pounds.

£.................... [2]
5 This is a velocity-time graph for a short car journey.

(a) Use the graph to describe the car journey in words.

…….......

…….......

…….......

…….......

(b) Calculate the total distance moved by the car in the 20 seconds. Show your working clearly.

……………………..m

……………………..m

……………………..m [4]
(c) A second car starts out at the same time as the car above. It accelerates uniformly from rest at a rate of 0.4 m/s² for 10 seconds, and then decelerates to rest over the next 8 seconds.

(i) Calculate the change in velocity of the car in the first 10 seconds. In your answer use the equation: acceleration = change in velocity ÷ time.

\[\text{change in velocity} = \text{acceleration} \times \text{time} \]

\[\text{change in velocity} = 0.4 \, \text{m/s}^2 \times 10 \, \text{s} = 4 \, \text{m/s} \]

(ii) Draw a line on the graph opposite to show the total journey of the second car.
6 Below is a diagram showing a car moving at a steady speed along a straight, flat road.

(a) For each of the four forces labelled in the diagram above, state what is pushing or pulling the car in the direction shown.

A

B

C

D

(b) The driver suddenly pushes his foot down on the accelerator pedal.

(i) State which one of the four forces has changed.

....................... [1]

(ii) Calculate the acceleration of the car if the resultant force is now 800 N.
Mass of car, together with the driver = 1000 kg

.......................m/s² [3]

(iii) The car travels a distance of 830m, when the force of 800 N is applied. Calculate the work done by the car engine.
In your answer use the equation: work done = force x distance.

...J [2]
7 (a) Below is a simple model of the atom, with one part labelled. Label the other three parts (A, B and C) shown.

(b) Radioactive materials give off three types of radiation: alpha particles, beta particles and gamma rays. These have different penetrating powers.

You are given a sample of radioactive material which gives out one of the three types of radiation, but you do not know which one. You also have a Geiger counter to detect radiation, as shown below.

You place a thin sheet of paper between the source and the Geiger counter. You then replace the paper with a sheet of aluminium metal about 2 mm thick.

Explain how the results tell you which sort of radiation is given out by the material.

……… [2]
(c) Identify one hazardous effect associated with collecting the results from this experiment and explain how you would complete the experiment in order to reduce this risk.

...
...
...
... [2]
Eight

Two people are discussing plans to build a nuclear power station near their town.

Pam
I think a nuclear power station would be a good thing. It’s much better than burning coal or oil, and it will bring work to the area.

Suraiya
I disagree with you. Renewable ways of providing energy would be much better. I’m also worried about the dangerous nuclear waste produced.

Explain the different points of view put forward by these two people, and state, with reasons, which of the two you think has the better argument.
Sam is doing an experiment to investigate the output of a solar panel. She is using a small photocell to model the panel.

She is measuring the power output of the photocell when it is at different distances from a lamp, as shown below.
(a) Sam obtained a range of values of power at different distances, as shown in the table below.

<table>
<thead>
<tr>
<th>distance (cm)</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>power (mW)</td>
<td>72</td>
<td>57</td>
<td>49</td>
<td>43</td>
<td>39</td>
<td>36</td>
</tr>
</tbody>
</table>

Four data points have been plotted on the graph axes below.

(i) Plot the remaining two data points and add a best-fit curve.

(ii) What does the graph show?

(iii) At a distance of 25 cm the power was 72 mW. The voltage across the photocell was recorded as 12 V. In your answer use the equation: power = potential difference × current. Calculate the current through the photocell.

\[\text{current} = \frac{\text{potential difference}}{\text{power}} \]
(iv) Calculate the resistance in ohms of the resistor using the equation:
potential difference = current x resistance.

\[\Omega \] [3]

(b) Describe how this experiment should be completed to get a valid set of data.

……
……
……
…… [4]

(c) Tom has done an identical experiment to Sam’s in a different part of the same lab.
He used an identical lamp, photocell and resistor, but his values of power were much lower
than Sam's for the same distances.
He thinks that his part of the lab must have been different from Sam’s.
Suggest and explain a reason for the difference in their results.

……
……
……
…… [2]

END OF QUESTION PAPER
Copyright Information:

OCR is committed to seeking permission to reproduce all third-party content that it uses in the assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.
Specimen Assessment Material
GCSE (9–1) Physics B (Twenty First Century Science)
J259/02 Depth in physics (Foundation Tier)

SAMPLE MARK SCHEME

MAXIMUM MARK 90

This document consists of 20 pages
MARKING INSTRUCTIONS

PREPARATION FOR MARKING

SCORIS

1. Make sure that you have accessed and completed the relevant training packages for on-screen marking: scoris assessor Online Training; OCR Essential Guide to Marking.

2. Make sure that you have read and understood the mark scheme and the question paper for this unit. These are posted on the RM Cambridge Assessment Support Portal http://www.rm.com/support/ca

3. Log-in to scoris and mark the required number of practice responses (“scripts”) and the required number of standardisation responses.

YOU MUST MARK 10 PRACTICE AND 10 STANDARDISATION RESPONSES BEFORE YOU CAN BE APPROVED TO MARK LIVE SCRIPTS.

MARKING

1. Mark strictly to the mark scheme.

2. Marks awarded must relate directly to the marking criteria.

3. The schedule of dates is very important. It is essential that you meet the scoris 50% and 100% (traditional 50% Batch 1 and 100% Batch 2) deadlines. If you experience problems, you must contact your Team Leader (Supervisor) without delay.

4. If you are in any doubt about applying the mark scheme, consult your Team Leader by telephone, email or via the scoris messaging system.
5. Work crossed out:
 a. where a candidate crosses out an answer and provides an alternative response, the crossed out response is not marked and gains no marks
 b. if a candidate crosses out an answer to a whole question and makes no second attempt, and if the inclusion of the answer does not cause a rubric infringement, the assessor should attempt to mark the crossed out answer and award marks appropriately.

6. Always check the pages (and additional objects if present) at the end of the response in case any answers have been continued there. If the candidate has continued an answer there then add a tick to confirm that the work has been seen.

7. There is a NR (No Response) option. Award NR (No Response)
 - if there is nothing written at all in the answer space
 - OR if there is a comment which does not in any way relate to the question (e.g. ‘can’t do’, ‘don’t know’)
 - OR if there is a mark (e.g. a dash, a question mark) which isn’t an attempt at the question.
 Note: Award 0 marks – for an attempt that earns no credit (including copying out the question).

8. The scoris comments box is used by your Team Leader to explain the marking of the practice responses. Please refer to these comments when checking your practice responses. Do not use the comments box for any other reason.
 If you have any questions or comments for your Team Leader, use the phone, the scoris messaging system, or email.

9. Assistant Examiners will send a brief report on the performance of candidates to their Team Leader (Supervisor) via email by the end of the marking period. The report should contain notes on particular strengths displayed as well as common errors or weaknesses. Constructive criticism of the question paper/mark scheme is also appreciated.
10. For answers marked by levels of response:

Read through the whole answer from start to finish, using the Level descriptors to help you decide whether it is a strong or weak answer. The indicative scientific content in the Guidance column indicates the expected parameters for candidates’ answers, but be prepared to recognise and credit unexpected approaches where they show relevance. Using a ‘best-fit’ approach based on the skills and science content evidenced within the answer, first decide which set of level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer.

Once the level is located, award the higher or lower mark:

The higher mark should be awarded where the level descriptor has been evidenced and all aspects of the communication statement (in italics) have been met.

The lower mark should be awarded where the level descriptor has been evidenced but aspects of the communication statement (in italics) are missing.

In summary:

The skills and science content determines the level.
The communication statement determines the mark within a level.

Level of response questions on this paper are 3(c) and 8.
11. **Annotations**

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO NOT ALLOW</td>
<td>Answers which are not worthy of credit</td>
</tr>
<tr>
<td>IGNORE</td>
<td>Statements which are irrelevant</td>
</tr>
<tr>
<td>ALLOW</td>
<td>Answers that can be accepted</td>
</tr>
<tr>
<td>()</td>
<td>Words which are not essential to gain credit</td>
</tr>
<tr>
<td>__</td>
<td>Underlined words must be present in answer to score a mark</td>
</tr>
<tr>
<td>ECF</td>
<td>Error carried forward</td>
</tr>
<tr>
<td>AW</td>
<td>Alternative wording</td>
</tr>
<tr>
<td>ORA</td>
<td>Or reverse argument</td>
</tr>
</tbody>
</table>
12. **Subject-specific Marking Instructions**

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet *Instructions for Examiners*. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.
The breakdown of Assessment Objectives for GCSE (9–1) in Physics B (Twenty First Century Science):

<table>
<thead>
<tr>
<th>Assessment Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO1</td>
</tr>
<tr>
<td>AO1.1</td>
</tr>
<tr>
<td>AO1.2</td>
</tr>
<tr>
<td>AO2</td>
</tr>
<tr>
<td>AO2.1</td>
</tr>
<tr>
<td>AO2.2</td>
</tr>
<tr>
<td>AO3</td>
</tr>
<tr>
<td>AO3.1</td>
</tr>
<tr>
<td>AO3.1a</td>
</tr>
<tr>
<td>AO3.1b</td>
</tr>
<tr>
<td>AO3.2</td>
</tr>
<tr>
<td>AO3.2a</td>
</tr>
<tr>
<td>AO3.2b</td>
</tr>
<tr>
<td>AO3.3</td>
</tr>
<tr>
<td>AO3.3a</td>
</tr>
<tr>
<td>AO3.3b</td>
</tr>
<tr>
<td>Question</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>1 (a)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(b)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(c)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Question</td>
</tr>
<tr>
<td>----------</td>
</tr>
</tbody>
</table>
| 2 (a) (i) | Gamma ✓
Infra-red ✓
Radio ✓ | 3 | 1.1 | |
| 2 (a) (ii) | Wavelength ✓ | 1 | 1.1 | |
| 2 (b) | X-rays to produce images of bones
microwaves to carry information along …
infra-red to carry satellite signals | 2 | 2.1 | All correct = 2 marks
2 correct = 1 mark
1 or 0 correct = 0 marks |
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>AO element</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (a)</td>
<td>False ✓ True ✓</td>
<td>2</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>(3), 2, 5, 6, 4, (1)</td>
<td>4</td>
<td>1.1</td>
<td>One mark for each number in the correct place unless it is repeated. Repeated numbers do not score even if one is correct</td>
</tr>
<tr>
<td>(c)*</td>
<td>Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question.</td>
<td>6</td>
<td>1.1 x2 2.1 x4</td>
<td>AO1.1: Nature of galaxies For example: • Collection of stars • In vast numbers • All the stars in a galaxy are kept together by the gravity of all the other stars • Galaxies have red-shift AO1.1: Basic statement about the universe started in a Big Bang AO2.1: Description of red-shift (linked to the nature of galaxies) For example: • Red-shift means moving away • Bigger red-shift means moving faster • Further galaxies are moving away faster AO2.1: Hubble’s observations (linked to the nature of galaxies) For example: • Galaxies are (well) outside the Milky Way • Further galaxies have greater red-shift AO2.1: Evidence for expanding universe model (linked to galaxies and red-shift) For example: • Must have all started at the same place at one particular time • Galaxies have been moving apart ever since</td>
</tr>
</tbody>
</table>

Level 3 (5–6 marks)
Correctly describes the nature of galaxies AND Links this to a description of red-shift and may link this to Hubble’s observations AND Links this to the relationship between the distance of each galaxy and its speed as evidence of an expanding universe model

There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.

Level 2 (3–4 marks)
Correctly describes the nature of galaxies AND Links this to a description of red-shift OR refers to galaxies moving away from us without direct reference to red-shift OR Describes the relationship between the distance of a galaxy and its speed as evidence of an expanding universe model

There is a line of reasoning presented with
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>AO element</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>some structure. The information presented is relevant and supported by some evidence.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | **Level 1 (1–2 marks)**
Correctly describes the nature of galaxies AND
Makes reference to galaxies moving away from us without direct reference to red-shift OR
Makes a basic statement about how the universe started in a Big Bang
The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. | | | |
| | **0 marks**
No response or no response worthy of credit. | | | |
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>AO element</th>
<th>Guidance</th>
</tr>
</thead>
</table>
| **4 (a) (i)** | FIRST CHECK THE ANSWER ON ANSWER LINE.
If answer = 6.5 (kWh) award 3 marks
Convert 195 minutes in hours = 3.25 h ✓
2.0 (kW) × 3.25 (h)
= 6.5 (kWh) ✓ | 3 | 1.2 | Correct substitution gains first 2 marks (if equation is missing) |
| **4 (a) (ii)** | FIRST CHECK THE ANSWER ON ANSWER LINE.
If answer = 8 – 9 (A) and therefore appliance A award 4 marks
Recalls Power = Voltage x Current ✓
Converts 2 kW to 2000 W ✓
Rearranges to I = P/V = 2000 / 230 ✓
Gets 8 – 9 A so appliance A has largest current ✓ | 4 | 1.1 | Correct substitution gains first 2 marks (if equation is missing) |
| | Or applies $P = IV$ to appliance B (to find P) | | 2.1 | Which is 276 – 288 W |
| | So 2 kW (appliance A) is greatest power and so greatest current | | 2.1 | |
| **4 (b)** | Insulate the tank ✓
So less heat is lost through conduction over time ✓ | 2 | 2.2 | Method stated |
| | Explain why energy loss is less e.g. not heat water until needed | | | |
| **4 (c)** | FIRST CHECK ANSWER ON ANSWER LINE.
If answer = £0.51 award 2 marks
16p x 3.2 kWh = 51.2 p ✓
51.2 p ÷ 100 = (£)0.51 ✓ | 2 | 2.1 | |
<p>| | | | 3.2b | |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>AO element</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (a)</td>
<td>Steady speed (of 5 m/s) for 10 seconds/to start with ✓ Then decelerates (to rest) ✓ At a uniform rate ✓</td>
<td>3</td>
<td>3.1a</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>Attempts to find area under line ✓ Area under 1st 10 s = 50 m ✓ Last 10 s = triangle area = 25 m ✓ Total is rectangle + triangle = 75 (m) ✓</td>
<td>4</td>
<td>2.2</td>
<td>ECF own values for rectangle and triangle</td>
</tr>
<tr>
<td>(c) (i)</td>
<td>FIRST CHECK THE ANSWER ON ANSWER LINE. If answer = 4 (m/s) award 3 marks Re-arrange equation to get Speed = acceleration x time ✓ 0.4 x 10 ✓ = 4 (m/s) ✓</td>
<td>3</td>
<td>1.2</td>
<td>Correct substitution gains first 2 marks (if equation is missing) Method is using v=at, evaluation = 4 (m/s) ECF own value of speed for second point</td>
</tr>
<tr>
<td>(ii)</td>
<td>Line from (0,0) ✓ To (10,4) ✓ Line from top speed to (18,0) ✓</td>
<td>3</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
<td>Marks</td>
<td>AO element</td>
<td>Guidance</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>6 (a)</td>
<td>A: the ground pushes the car upwards ✓ B: weight of the car ✓ C: engine/wheels push it forwards/provide driving force ✓ D: air resistance/drag/friction ✓</td>
<td>4</td>
<td>2.1</td>
<td>ALLOW ‘gravity’ or ‘the Earth pulls it down’ ALLOW reaction force</td>
</tr>
<tr>
<td>(b) (i)</td>
<td>C ✓</td>
<td>1</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>(ii)</td>
<td>FIRST CHECK THE ANSWER ON ANSWER LINE. If answer = 0.8 (m/s²) award 3 marks Recall $F=ma$ and rearrange to find a ✓ $a = \frac{F}{m} = \frac{800 \text{ N}}{1000 \text{ kg}} ✓$ $= 0.8 (\text{m/s}^2)$ ✓</td>
<td>3</td>
<td>1.1 2.1 2.1</td>
<td></td>
</tr>
<tr>
<td>(iii)</td>
<td>FIRST CHECK ANSWER ON ANSWER LINE. If answer = 664000 (J) award 2 marks $830 \text{ m} \times 800 \text{ N ✓}$ $= 664000 \text{ (J ✓)}$</td>
<td>2</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
<td>Marks</td>
<td>AO element</td>
<td>Guidance</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>7 (a)</td>
<td>A: Nucleus ✓</td>
<td>3</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B: Neutron ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C: Electron ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>Alphas stopped by paper ✓</td>
<td>2</td>
<td>1.2</td>
<td>Any two points (this will allow the third to be deduced)</td>
</tr>
<tr>
<td></td>
<td>Betas penetrate paper but not Al sheet ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gammas penetrate both ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>Can cause cancer / damage cells ✓</td>
<td>2</td>
<td>1.1</td>
<td>ALLOW any hazard with relevant safety precaution</td>
</tr>
<tr>
<td></td>
<td>Make sure source is not directed towards body / is not ingested ✓</td>
<td></td>
<td>3.3a</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
<td>Marks</td>
<td>AO element</td>
<td>Guidance</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 8* | Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. | 6 | 1.1 x3 2.2 x1 3.1b x1 3.2b x1 | AO1.1 Renewable vs. Non-renewable energy resources
For example:
- Coal and oil are non – renewable so will run out
- Nuclear is also non renewable
- A renewable energy resource will not run out e.g. wind, wave, solar etc.
AO1.1 Nuclear energy hazards
For example
- Ionising radiation can have hazardous effects, notably on human body tissue
AO2.2 Compare the ways in which the main energy resources are used to generate electricity
AO 3.1b Risk/benefit
- CO₂ contributes to global warming
- nuclear waste could leak / enter the biosphere
- risk small, but consequence serious
- possibility of employment in new power station
- which may bring money into the area
- nuclear power stations don’t produce CO₂ (once built)
- coal / gas produce CO₂
- solar / wind / hydroelectric / tidal don’t produce CO₂
- radioactive waste produced in nuclear power stations
AAO3.2b Judgement made as to the better argument |
| | Level 3 (5–6 marks) | | | Balanced explanation of both points of view linked to the risks / benefits.
AND
Judgement made as to the better argument.
There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated |
| | Level 2 (3–4 marks) | | | Explains at least one point in favour of nuclear power and one against.
AND
Makes a reasoned choice of Pam or Suraiya as being right.
There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. |
| | Level 1 (1–2 marks) | | | States differences between renewable and non-renewable energy sources.
AND
Considers only one side of the argument.
The information is basic and communicated in an unstructured way. The information is |
<table>
<thead>
<tr>
<th>0 marks</th>
<th>supported by limited evidence and the relationship to the evidence may not be clear.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No response or no response worthy of credit.</td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>9 (a) (i)</td>
<td>Both points correctly plotted ✓</td>
</tr>
<tr>
<td></td>
<td>Smooth curve drawn ✓</td>
</tr>
<tr>
<td>(ii)</td>
<td>Power goes down with distance (non-uniformly) ✓</td>
</tr>
<tr>
<td>(iii)</td>
<td>FIRST CHECK ANSWER ON ANSWER LINE. If answer = 6 × 10⁻³ (A) award 4 marks.</td>
</tr>
<tr>
<td></td>
<td>Rearranges equation to give</td>
</tr>
<tr>
<td></td>
<td>Current = power ÷ potential difference ✓</td>
</tr>
<tr>
<td></td>
<td>Converts mW to W = 0.072 W ✓</td>
</tr>
<tr>
<td></td>
<td>= 0.072 ÷ 12 ✓</td>
</tr>
<tr>
<td></td>
<td>= 6 × 10⁻³ A ✓</td>
</tr>
<tr>
<td></td>
<td>Or 6mA</td>
</tr>
<tr>
<td>(iv)</td>
<td>FIRST CHECK ANSWER ON ANSWER LINE. If answer = 2000 (Ω) award 3 marks.</td>
</tr>
<tr>
<td></td>
<td>Rearrange equation to give</td>
</tr>
<tr>
<td></td>
<td>Resistance = Potential difference ÷ current ✓</td>
</tr>
<tr>
<td></td>
<td>12v ÷ 6 × 10⁻³ A ✓</td>
</tr>
<tr>
<td></td>
<td>= 2000 (Ω)</td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| (b) | Lamp at fixed distance from photocell and read I and V ✓
Repeat reading at each distance ✓
Repeat for any outliers ✓
Take mean I and V for each distance ✓ | 4 | 3.3a
3.3b
3.3b
3.3a | |
| (c) | Recognises that Tom’s photocell is getting less light ✓
Suggested reason ✓ | 2 | 3.2a
3.2b | e.g. Sam was near a window (so more light) while Tom was in a dark corner; allow systematic mismeasurement of distance by one or the other if correctly justified e.g. the end of Sam’s ruler wasn’t near the actual lamp but some distance from it, so all her distances are too small
ALLOW any situation where Tom would receive less light than Sam |