OXFORD CAMBRIDGE AND RSA EXAMINATIONS
GCSE
A501/02
MATHEMATICS A
Unit A (Higher Tier)

MONDAY 9 JUNE 2014: Morning
DURATION: 1 hour
plus your additional time allowance
MODIFIED ENLARGED

Candidates answer on the Question Paper.

OCR SUPPLIED MATERIALS:
None

OTHER MATERIALS REQUIRED:
Scientific or graphical calculator
Geometrical instruments
Tracing paper (optional)

You are permitted to use a calculator for this paper

READ INSTRUCTIONS OVERLEAF
INSTRUCTIONS TO CANDIDATES

Write your name, centre number and candidate number in the boxes on the front page. Please write clearly and in capital letters.

Use black ink. HB pencil may be used for graphs and diagrams only.

Answer ALL the questions.

Read each question carefully. Make sure you know what you have to do before starting your answer.

Your answers should be supported with appropriate working. Marks may be given for a correct method even if the answer is incorrect.

Write your answer to each question in the space provided. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 60.

Any blank pages are indicated.
FORMULAE SHEET: HIGHER TIER

Area of trapezium = $\frac{1}{2} (a + b) h$

Volume of prism = (area of cross-section) × length

In any triangle ABC

Sine rule \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \]

Cosine rule \[a^2 = b^2 + c^2 - 2bc \cos A \]

Area of triangle = $\frac{1}{2} ab \sin C$

Volume of sphere = $\frac{4}{3} \pi r^3$

Surface area of sphere = $4\pi r^2$

Volume of cone = $\frac{1}{3} \pi r^2 h$

Curved surface area of cone = πrl

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$, where $a \neq 0$, are given by

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
Answer ALL the questions.

1 Caroline and Helen share a job in the ratio 3 : 2.

 (a) Caroline works for 24 hours a week.

 Calculate how many hours a week Helen works.

 (a) ________ hours [2]

 (b) The annual pay for the whole job is £26 000.

 Work out the annual pay for Caroline and for Helen.

 (b) Caroline £ _________________

 Helen £ _________________ [3]
2 (a) Calculate.

(i) \(\sqrt{28.09^3} \)

\(\text{(a)(i) } \) \[1\]

(ii) \(\frac{3.6 + 9.42}{2.4} \)

Give your answer correct to 1 decimal place.

\(\text{(ii) } \) \[2\]

(b) Calculate the reciprocal of 2.5.

\(\text{(b) } \) \[1\]

(c) Insert brackets to make the following calculations correct.

\[7 \times 2 + 6^2 = 400 \]

\[6 + 4 \times 2 - 5 = 15 \] \[2\]
3 The scale drawing below shows the positions of two ports, Aylton (A) and Borsey (B).

![Scale drawing of ports A and B]

SCALE: 1 cm REPRESENTS 5 km

(a) Find the actual distance of Aylton from Borsey.

(a) _____________ km [2]

(b) Find the bearing of Aylton from Borsey.

(b) ________________ ° [1]
(c) A boat sails from Aylton on a bearing of 213° for 16 km to C.

On the scale drawing, construct the position of C. [2]
4 (a) Multiply out and simplify.

\[4(2a + 5) - 3(a + 2)\]

(a) __________________ [3]

(b) Factorise fully.

\[12y + 4y^2\]

(b) __________________ [2]
5 (a) The \(n \)th term of a sequence is \(n^2 + 5 \).

Work out the first three terms of this sequence.

\[\text{[2]} \]

(b) Here are the first four terms of another sequence.

\[
\begin{array}{cccc}
5 & 11 & 17 & 23 \\
\end{array}
\]

Find an expression for the \(n \)th term of this sequence.

\[\text{[2]} \]
Find the highest common factor (HCF) of 108 and 72.

[2]
The students in two maths groups were each asked to solve a puzzle.

(a) The table below summarises the times taken by the 30 members of group 7P.

<table>
<thead>
<tr>
<th>Time (t seconds)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 ≤ t < 30</td>
<td>3</td>
</tr>
<tr>
<td>30 ≤ t < 40</td>
<td>7</td>
</tr>
<tr>
<td>40 ≤ t < 50</td>
<td>13</td>
</tr>
<tr>
<td>50 ≤ t < 60</td>
<td>6</td>
</tr>
<tr>
<td>60 ≤ t < 70</td>
<td>1</td>
</tr>
</tbody>
</table>

Calculate an estimate of the mean time taken by group 7P.

(a) ________ seconds [4]
(b) The box plot below represents the times taken by members of group 7S.

(i) Find the median time taken by group 7S.

(b)(i) ___________ seconds [1]

(ii) Find the interquartile range of the times taken by group 7S.

(ii) ___________ seconds [2]
8 (a) Solve.

\[6x^2 = 150 \]

(b) Rearrange this formula to make \(a \) the subject.

\[S = 4bc + 2a^2 \]
Kahli has a sewing box which is a cuboid measuring 15 cm by 35 cm by 10 cm. She buys a pair of thin knitting needles which are 40 cm long.

Calculate whether a 40 cm knitting needle can fit in her sewing box. Show how you decide. [3]
10 A staircase consists of treads of length T and risers of length R, as shown below.

There are four safety requirements:

- T must be at least 220 mm
- R must be at most 220 mm
- $T + 2R$ must be at least 550 mm and at most 700 mm
- angle g must not be more than 42°.
(a) Russell wants a staircase with $T = 222\text{ mm}$ and $R = 218\text{ mm}$. These values satisfy the first two safety requirements.

Show whether these values satisfy each of the other two safety requirements.

[4]
(b) Calculate the largest value that R can be when $T = 270 \text{ mm}$.
Show that your solution satisfies all the safety requirements.
11 (a) The table below summarises the distances cycled by members of a cycling group during one weekend.

<table>
<thead>
<tr>
<th>Distance (d km)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ≤ d < 20</td>
<td>4</td>
</tr>
<tr>
<td>20 ≤ d < 30</td>
<td>7</td>
</tr>
<tr>
<td>30 ≤ d < 50</td>
<td>25</td>
</tr>
<tr>
<td>50 ≤ d < 100</td>
<td>40</td>
</tr>
<tr>
<td>100 ≤ d < 150</td>
<td>18</td>
</tr>
</tbody>
</table>
Draw a histogram to represent this information.
(b) This histogram represents the times spent cycling by the members of the group that weekend.
(i) How many of the group cycled for 10 hours or more that weekend?

(b)(i) ________________ [1]

(ii) What can you tell from the histogram about the shortest time spent cycling?

___ [1]

TURN OVER FOR QUESTION 12
You are given that \(f(x) = cx + d \) and that \(f(0) = -6 \) and \(f(2) = 10 \).

Find the values of \(c \) and \(d \).

\[
c = \underline{} \\
d = \underline{} \quad [3]
\]

END OF QUESTION PAPER