Mathematics A
Paper 1 (Non-Calculator)

You must have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser. Tracing paper may be used.

Instructions
- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided – there may be more space than you need.
- Calculators must not be used.

Information
- The total mark for this paper is 100
- The marks for each question are shown in brackets – use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed.

Advice
- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.
GCSE Mathematics 1MA0

Formulae: Foundation Tier

You must not write on this formulae page. Anything you write on this formulae page will gain NO credit.

Area of trapezium = \(\frac{1}{2}(a + b)h \)

Volume of prism = area of cross section \(\times \) length
1. Jack grows five types of vegetable.

The table shows some information about the vegetables.

<table>
<thead>
<tr>
<th>Vegetable</th>
<th>Sow seeds</th>
<th>Depth of planting</th>
<th>Harvest</th>
</tr>
</thead>
<tbody>
<tr>
<td>peas</td>
<td>May</td>
<td>5 cm</td>
<td>July</td>
</tr>
<tr>
<td>carrots</td>
<td>February</td>
<td>2 cm</td>
<td>May</td>
</tr>
<tr>
<td>beans</td>
<td>March</td>
<td>5 cm</td>
<td>July</td>
</tr>
<tr>
<td>lettuces</td>
<td>May</td>
<td>1 cm</td>
<td>July</td>
</tr>
<tr>
<td>onions</td>
<td>February</td>
<td>1 cm</td>
<td>September</td>
</tr>
</tbody>
</table>

(a) Write down the month when Jack sows seeds for carrots.

.. (1)

(b) Which vegetable does Jack harvest in September?

.. (1)

Jack sows seeds for one type of vegetable in May at a depth of 1 cm.

(c) Which vegetable?

.. (1)

(Total for Question 1 is 3 marks)
2 (a) Write $\frac{1}{2}$ as a decimal.

..

(1)

(b) Write 0.3 as a fraction.

..

(1)

(c) Write 0.8 as a percentage.

..

% (1)

(d) Work out 7.2×8

..

(1)

(e) Work out $\frac{7}{12} - \frac{3}{12}$

Give your answer as a fraction in its simplest form.

..

(2)

(Total for Question 2 is 6 marks)
Six shapes are drawn on the grid of squares.

Two of the shapes are congruent.

(a) Write down the letters of these two shapes.

.. and ..

(1)

One of the shapes is similar to shape F.

(b) Write down the letter of this shape.

..

(1)

(Total for Question 3 is 2 marks)
The table shows the numbers of people, in thousands, visiting five castles in 2009 and in 2010.

<table>
<thead>
<tr>
<th>Castle</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodiam</td>
<td>185</td>
<td>177</td>
</tr>
<tr>
<td>Chirk</td>
<td>108</td>
<td>120</td>
</tr>
<tr>
<td>Dunster</td>
<td>133</td>
<td>128</td>
</tr>
<tr>
<td>Penrhyn</td>
<td>231</td>
<td>230</td>
</tr>
<tr>
<td>Scotney</td>
<td>124</td>
<td>118</td>
</tr>
</tbody>
</table>

(a) Did a greater total number of people visit these castles in 2009 or in 2010? You must show all your working.
David wants to visit Dunster castle.
He is going to go from Taunton to Dunster by bus.

Here is part of the bus timetable.

<table>
<thead>
<tr>
<th></th>
<th>07 20</th>
<th>08 42</th>
<th>09 33</th>
<th>11 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taunton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coombe Florey</td>
<td>07 40</td>
<td>08 58</td>
<td>09 58</td>
<td>11 28</td>
</tr>
<tr>
<td>Watchet</td>
<td>08 03</td>
<td>09 21</td>
<td>10 21</td>
<td>11 51</td>
</tr>
<tr>
<td>Carhampton</td>
<td>08 16</td>
<td>09 34</td>
<td>10 34</td>
<td>12 04</td>
</tr>
<tr>
<td>Dunster</td>
<td>08 18</td>
<td>09 36</td>
<td>10 36</td>
<td>12 06</td>
</tr>
</tbody>
</table>

A bus leaves Taunton at 08 42

(b) (i) What time should this bus get to Dunster?

..

(ii) How many minutes should this bus take to get from Taunton to Dunster?

... minutes

(2)

Anne lives in Watchet.
She is going to go to Dunster by bus.
She wants to arrive in Dunster by 10 00

(c) Write down the time of the latest bus Anne can get from Watchet.

...

(1)

(Total for Question 4 is 6 marks)
There are six counters in a bag. Three counters are red, two counters are green and one counter is blue.

Nick takes at random a counter from the bag.

(a) Circle the word that best describes the likelihood that Nick takes a blue counter.

impossible unlikely even likely certain

(b) On the probability scale, mark with a cross (×) the probability that Nick takes a red counter.

\[
\begin{array}{c|c|c|c}
0 & \frac{1}{2} & 1 \\
\end{array}
\]

(c) On the probability scale, mark with a cross (×) the probability that Nick takes a white counter.

\[
\begin{array}{c|c|c|c}
0 & \frac{1}{2} & 1 \\
\end{array}
\]

(Total for Question 5 is 3 marks)
6 Ameeta and some friends want to have a meal in a restaurant. On Saturday, each meal will cost £21

Ameeta sees this special offer.

Special Offer
Monday to Friday
2 meals for £32

Ameeta is going to book a table for 6 people.

The total cost of the 6 meals will be less on Wednesday than on Saturday.

(a) How much less?

\[£ \text{..} \]

(3)

Ameeta can choose one main course and one dessert.

Menu

<table>
<thead>
<tr>
<th>main course</th>
<th>dessert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken</td>
<td>Fruit</td>
</tr>
<tr>
<td>Lamb</td>
<td>Eclair</td>
</tr>
<tr>
<td></td>
<td>Trifle</td>
</tr>
</tbody>
</table>

(b) Write down all the possible combinations Ameeta can choose.

..
..
..
..

(2)

(Total for Question 6 is 5 marks)
7 Here is a quadrilateral.

(a) Write down the mathematical name of this quadrilateral.

(b) In the space below, sketch a cuboid.

(Total for Question 7 is 2 marks)
8 (a) Solve \(x - 3 = 12 \)

\[x = .. \]

(1)

(b) Solve \(5y = 30 \)

\[y = .. \]

(1)

(c) Solve \(2w + 7 = 13 \)

\[w = .. \]

(2)

(Total for Question 8 is 4 marks)
9. Shape A and shape B are drawn on a centimetre grid.

One shape has a greater area than the other. How much greater?

(Total for Question 9 is 3 marks)
10 Here is a list of numbers.

\[
\begin{array}{ccccccc}
4 & 6 & 8 & 11 & 15 & 33 & 44 \\
\end{array}
\]

(a) From the list, write down a factor of 42

……………….. (1)

(b) From the list, write down a multiple of 22

……………….. (1)

(c) From the list, write a different number in each box to make the statement true.

\[
\square \div \square \times \square = 12
\]

(1)

(Total for Question 10 is 3 marks)
11 Amber earns £7 for each hour she works from Monday to Friday.
She earns £10 for each hour she works on Saturday.

One week Amber worked for 4 hours on Saturday.
That week she earned a total of £180

(a) How many hours did Amber work that week?

.. hours

(3)

Chris works for 7 hours each day from Monday to Friday.
He earns e pounds for each hour he works.

(b) Write down an expression, in terms of e, for the total amount, in pounds, that Chris earns from Monday to Friday.
Give your answer in its simplest form.

..

(2)

(Total for Question 11 is 5 marks)
12 Jodie buys 12 cans of cola.
There are 330 ml of cola in each can.

Rob buys 4 bottles of cola.
There is 1 litre of cola in each bottle.

Rob buys more cola than Jodie.
How much more?
Adam owns a cafe.

There are 150 grams of coffee in each jar of coffee, costing £4.
There are 160 tea bags in each box of tea bags, costing £4.50.

Adam uses 3 grams of coffee to make each cup of coffee and 1 tea bag to make each mug of tea.

Adam buys enough jars of coffee to make 300 cups of coffee. He also buys enough boxes of tea bags to make 500 mugs of tea.

(a) Work out the total cost.
Adam also sells cakes in his cafe.

On Friday afternoon, Adam had **no** cakes to sell.

On Saturday morning, 6 trays of cakes were delivered to the cafe. There were 30 cakes in each tray.

When the cafe closed on Saturday, 12 of these cakes had **not** been sold.

(b) Work out how many cakes were sold on Saturday.

\[
\text{(Total for Question 13 is 8 marks)}
\]
14 You can use this conversion graph to change between temperatures in degrees Celsius (°C) and temperatures in degrees Fahrenheit (°F).

The temperature inside a refrigerator needs to be 40°F.

(a) Use the conversion graph to change a temperature of 40°F into a temperature in °C.

..............°C

(1)
The temperature in a freezer needs to be 0°F.

The temperature in Dave’s freezer is –10°C.

*(b) Compare the temperature in Dave’s freezer with 0°F. You must show your working.

(Total for Question 14 is 4 marks)
Colin wants to find out the type of fruit that students at his school like best.

Design a suitable table for a data collection sheet he could use.
16 The table gives some information about Charlie’s spending last month.

<table>
<thead>
<tr>
<th>Item</th>
<th>Percentage of total spending</th>
</tr>
</thead>
<tbody>
<tr>
<td>rent</td>
<td></td>
</tr>
<tr>
<td>food</td>
<td>15%</td>
</tr>
<tr>
<td>transport</td>
<td>12%</td>
</tr>
<tr>
<td>other</td>
<td>43%</td>
</tr>
</tbody>
</table>

(a) Work out what percentage of his total spending was on rent.

.. %

(1)

Charlie’s total spending last month was £800

(b) How much did Charlie spend on food last month?

£ ..

(2)

(Total for Question 16 is 3 marks)
17 (a) Complete the table of values for \(y = 2x + 3 \) for values of \(x \) from 0 to 5

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>5</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) On the grid, draw the graph of \(y = 2x + 3 \) for values of \(x \) from 0 to 5

(Total for Question 17 is 4 marks)
18 The pie chart shows information about the number of votes each of four candidates got in an election.

(a) What fraction of the votes did Megan Wells get?

Ellen Azmi got 4500 votes.

(b) Work out the total number of votes the four candidates got.

(Total for Question 18 is 4 marks)
19 The diagram shows a prism.

(a) (i) Write down how many vertices the prism has.

(ii) Write down how many faces the prism has.

The cross section of the prism is a regular hexagon.
(b) In the space below, sketch a net of the prism.
The area of the cross section of the prism is 30 cm2.
The length of the prism is 25 cm.

(c) Work out the volume of the prism.

.........................

(3)

(Total for Question 19 is 7 marks)
20 (a) Simplify \(p^2 \times p^5 \)

(b) Expand and simplify \(3(m + 4) - 2(4m + 1) \)

(c) Factorise \(n^2 - 7n \)

(Total for Question 20 is 4 marks)
21 The diagram shows a **fair** eight-sided spinner.

The diagram shows:

```
     A    C    C
   B    B    C
     C    C
```

Beth is going to spin the spinner 400 times.

(a) Work out an estimate for the number of times that Beth will get a C.

(b) Carol spins a **different** spinner 80 times.

The table shows information about her results:

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>39</td>
</tr>
<tr>
<td>K</td>
<td>25</td>
</tr>
<tr>
<td>L</td>
<td>16</td>
</tr>
</tbody>
</table>

Dan spins this spinner 300 times.

(b) Work out an estimate for the number of times that Dan will get an L.

(Total for Question 21 is 5 marks)
(a) Reflect shape P in the line $x = -1$
(b) Rotate shape \mathbf{P} 90° anticlockwise about $(0, 1)$.

(Total for Question 22 is 4 marks)
23 Richard wants to find out how often people buy crisps. He uses this question on a questionnaire.

How often do you buy crisps?

Often ☐ Sometimes ☐ Never ☐

(a) Write down two things that are wrong with this question.

1 ..

2 ..

(b) Design a better question for Richard to use on his questionnaire to find out how often people buy crisps.

(Total for Question 23 is 4 marks)
The diagram shows the plan of a floor.

Angie is going to varnish the floor.

She needs 1 litre of varnish for 5 m2 of floor.
There are 2.5 litres of varnish in each tin of varnish.

Angie has 3 tins of varnish.
Does she have enough varnish for all the floor?
You must show all your working.