Mark Scheme (Results)

Summer 2015

Pearson Edexcel International GCSE Mathematics A (4MA0)
Paper 3H

Pearson Edexcel Level1/Level 2 Certificate Mathematics A (KMA0)
Paper 3H
Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK’s largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world’s leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We’ve been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UG042083
All the material in this publication is copyright
© Pearson Education Ltd 2015
General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate’s response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate’s response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations
- cao – correct answer only
- ft – follow through
- isw – ignore subsequent working
- SC - special case
- oe – or equivalent (and appropriate)
- dep – dependent
- indep – independent
- eeeoo – each error or omission
- awrt – answer which rounds to
• **No working**
 If no working is shown then correct answers normally score full marks.
 If no working is shown then incorrect (even though nearly correct) answers score no marks.

• **With working**
 If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
 If it is clear from the working that the “correct” answer has been obtained from incorrect working, award 0 marks.
 Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.
 If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
 If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
 If there is no answer on the answer line then check the working for an obvious answer.

• **Ignoring subsequent work**
 It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
 It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
 Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• **Parts of questions**
 Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.
Apart from questions 13a, 17 and 18 (where the mark scheme states otherwise) the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

<table>
<thead>
<tr>
<th>Q</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>345 ÷ 200 (=1.725) or 345 × 100(=34500)</td>
<td>“1.725” × 100 or “34500” ÷ 200</td>
<td></td>
<td>M1 for a correct units conversion (×100) or ÷200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>M1 for a correct units conversion (×100) and ÷200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A1 accept 173 if at least M1 awarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total 3 marks</td>
</tr>
<tr>
<td>2</td>
<td>(360−76−82−30) ÷2 = 86 or 225.5 ÷ 82 (=2.75) or 225.5 ÷ 82 × a where a ≠ 86 or 225.5 ÷ 82 × (360−76−82−30) oe (=473)</td>
<td>225.5 ÷ 82 × “86” or 225.5 ÷ 22.7.. × 23.8… or digits 236… or “473” ÷ 2</td>
<td></td>
<td>M1 Accept digits 2255(000…) in place of 225.5 in both method marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M1(dep) for complete method</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NB: 82 and 86 may be converted to percentage of 360 – and then these percentages used</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A1 oe accept 236.5 million or 236 500 000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total 3 marks</td>
</tr>
<tr>
<td>3</td>
<td>(a)</td>
<td>4n + 1</td>
<td></td>
<td>M1 4n + k (k may be zero)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A1 oe eg. 5 + (n − 1)x4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NB: n = 4n + 1 oe scores M1 A0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NB: Accept 4(n +1) + 1 oe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total 3 marks</td>
</tr>
</tbody>
</table>
4 (a) \[4 \times 13 = 52 \text{ or } \frac{w + x + y + z}{4} = 13 \text{ or } 4x13 - 33 \]

\[w = 19 \]

\[w = 13 \text{ or } \frac{w + x + y + z}{4} = 13 \text{ or } 4x13 - 33 \]

\[w = 9 \text{ or } w = 19 \]

\[x + y = 33 - 9 = 24 \]

Total 4 marks

5 (a) \[15960 \div 5.7 \times 4.6 \text{ or } 15960 \div 5.7 (=2800) \]

\[15960 \div 5.7 \]

Total 4 marks

6 (a) \[1.5 \times \pi \text{ or } 2 \times \pi \times (1.5 \div 2) \]

\[4.71 \]

Total 4 marks
Table 7

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>(a)</td>
<td>450 × 1.16 oe</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td>850 ÷ 1.16 oe (= 732.76) or 732 – 733</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“732.76” + 3.50</td>
<td>M1 (dep)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>736.26</td>
<td>M1 (dep) for (850 + “4.06”) ÷1.16 oe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A1 Accept 736 – 736.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total 5 marks</td>
</tr>
</tbody>
</table>

Table 8

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(AB² =) 6.5² – 6.3² (=2.56)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(AB =) (\sqrt{6.5² – 6.3²}) or (\sqrt{2.56})</td>
<td>M1 dep</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M1 for making AB the subject eg. (AB = 6.5\sin14.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NB: 1.6 as a rounded answer eg. from 1.594… gains A0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total 3 marks</td>
<td></td>
</tr>
</tbody>
</table>

Table 9

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>(a)</td>
<td>20y³</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(B1 for (ny³, n \neq 20) or (20y^m, m \neq 3))</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td>(\frac{3e}{5f^2})</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\frac{3e}{5f^2}) or (\frac{3}{5}ef^{-2}) or (0.6\frac{e}{f^2}) or (0.6ef^{-2})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\frac{3e}{5f^2}) with (k \neq 0.6) oe or (\frac{3ef}{5f^3}) or (\frac{3e^2}{5ef^2})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c)</td>
<td>(3p + 2q)(2p – 3q))</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M1 for ((ap + bq)(cp + dq)) with (ac = 6) and (bd = -6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(ie. the coefficients of (p) multiply to give 6 and the coefficients of (q) multiply to give –6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A1 oe</td>
</tr>
<tr>
<td></td>
<td>(d)</td>
<td>(x^{\frac{7}{3}})</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total 7 marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>10 (a)</td>
<td>$2.57 \times 10^{10} + 6.01 \times 10^{10} + 5.80 \times 10^{10} + 1.91 \times 10^{10}$ or $2.57 + 6.01 + 5.8 + 1.91 + 8.21$ or $245,000,000,000$ oe or digits 245</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.57×10^{11}</td>
<td>A1 cao</td>
<td></td>
</tr>
<tr>
<td>10 (b)</td>
<td>$(1.22\times10^{13}) \div (7.45 \times 10^{9})$ or $1637(58\ldots)$ or digits $1637(58\ldots)$</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1640</td>
<td>A1 accept $1637 - 1640$ (may be in standard form)</td>
<td></td>
</tr>
</tbody>
</table>

Total 4 marks
Question 11

NB: If it is clear that the surface area is being calculated then no marks can be awarded.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Marking Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2} \times (12 + 22) \times (20 - 12)) oe (=136)</td>
<td>M1</td>
</tr>
<tr>
<td>(12 \times 12 = 144)</td>
<td>M1</td>
</tr>
<tr>
<td>“136” + “144” = 280</td>
<td>M1 dep on at least one previous M1 scored</td>
</tr>
<tr>
<td>80 \times “280”</td>
<td>M1 dep on previous M1</td>
</tr>
<tr>
<td></td>
<td>A1</td>
</tr>
<tr>
<td>22400</td>
<td></td>
</tr>
</tbody>
</table>

Alternative

<table>
<thead>
<tr>
<th>Expression</th>
<th>Marking Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2} \times (12 + 22) \times (20 - 12)) oe (=136)</td>
<td>M1 (may be seen within a volume calculation)</td>
</tr>
<tr>
<td>(12 \times 12 = 144)</td>
<td>M1 (may be seen within a volume calculation)</td>
</tr>
<tr>
<td>“136” \times 80 = 10880 or “144” \times 80 = 11520</td>
<td>M1 dep on at least one previous M1 scored</td>
</tr>
<tr>
<td>“10880” + “11520”</td>
<td>M1 dep on previous M1</td>
</tr>
<tr>
<td>22400</td>
<td>A1</td>
</tr>
</tbody>
</table>

Special Case: Use of 10 cm for height of trapezium AND 10 cm for \(AF\)

<table>
<thead>
<tr>
<th>Expression</th>
<th>Marking Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>If not B3 then B2 for (290 \times 80 \text{ or } 80 \times (10 \times 12 + \frac{1}{2} \times (22 + 12) \times 10))</td>
<td></td>
</tr>
<tr>
<td>If not B2 then B1 for (10 \times 12 + \frac{1}{2} \times (22 + 12) \times 10 \text{ or } 10 \times 12 \times 80 \text{ and } \frac{1}{2} \times (22 + 12) \times 10 \times 80)</td>
<td></td>
</tr>
</tbody>
</table>

Total 5 marks
Question 12

<table>
<thead>
<tr>
<th></th>
<th>Calculation</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>(20 \times 151 = 3020) or (12 \times 148 = 1776) or (4796)</td>
<td>M1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>((3020 + 1776) \div (12 + 20)) or ((3020 + 1776) \div 32)</td>
<td>M1 dep</td>
<td>149.875</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A1 for 149.875 rounded or truncated to 1 or more decimal places</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Accept 150 if M2 awarded</td>
</tr>
<tr>
<td></td>
<td>Total 3 marks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Question 13

<table>
<thead>
<tr>
<th></th>
<th>Equation 1</th>
<th>Equation 2</th>
<th>Solution</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 (a)</td>
<td>(6x + 6y = 18) or (12x + 12y = 36) ((6x = 21))</td>
<td>(12x + 6y = 39) ((6y = -3))</td>
<td>(x = 3.5) oe, (y = -0.5) oe</td>
<td>M1 for appropriate multiplication to get coefficients of (x) or (y) the same (condone one arithmetic error) with the correct operation to eliminate one variable or for correct rearrangement of one equation followed by substitution in the other (condone one arithmetic error).</td>
</tr>
<tr>
<td></td>
<td>(x = 3.5)</td>
<td>(y = -0.5)</td>
<td>(4 \times 3.5 + 2y = 13)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4 \times 3.5 + 2y = 13)</td>
<td>NB: Could work with (x + y = 3) throughout rather than (3x + 3y = 9)</td>
</tr>
</tbody>
</table>

Question 13 (b)

<table>
<thead>
<tr>
<th></th>
<th>Equation</th>
<th>Solution</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 (b)</td>
<td>(y = \frac{-4x+13}{2}) or (y = -2x+6.5) or (y = -2x + 6.5)</td>
<td>(y = -2x+5)</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>line (L) has gradient (-2) (\text{eg. } L) has equation (2y = -4x + k) (k \neq 13) (-1 = -2 \times 3 + k) or (y = -1 = -2(x-3))</td>
<td>(y = -2x + 5)</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A1 oe eg. (4x + 2y = 10)</td>
</tr>
<tr>
<td></td>
<td>NB: (4 \times 3 + 2 \times -1 = 10) gets no marks unless clearly part of a complete method</td>
<td>NB: (L = -2x + 5) gets M2 A0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total 7 marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>14 (a)</td>
<td></td>
<td>(a −b)(a + b)</td>
<td>1</td>
</tr>
<tr>
<td>(b)</td>
<td>(2^{11} −1)(2^{11} + 1) or (2048 −1)(2048 + 1) or [\sqrt{4194304} = 2048\ or \sqrt{2^{22}} = 2048\ or \sqrt{2^{22}} = 2^{11}\ or \sqrt{4194304} = 2^{11}\ or 3, 23, 89, 683 (may be seen in a factor tree)</td>
<td>2</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2047, 2049</td>
<td>A1 cao</td>
</tr>
</tbody>
</table>

Total 3 marks
\[\tan x = \frac{25 - 10}{24} \]

\[(x =) \tan^{-1} \left(\frac{25 - 10}{24} \right) \text{ or } \]

\[\tan^{-1} 0.625 \text{ or } 32.005\ldots \]

90 + “\(x\)” oe

\[122 \]

M1 (indep)

A1 awrt 122

Alternative

\[\tan A = \frac{24}{25 - 10} \]

\[(A =) \tan^{-1} \left(\frac{24}{25 - 10} \right) \text{ or } \]

\[\tan^{-1} 1.6 \text{ or } 58 \text{ or } 57.9(94\ldots) \]

360 – 90 – 90 – “\(A\)” oe

\[122 \]

M1 (indep)

A1 awrt 122

Alternative

\[(BDC =) \tan^{-1} \left(\frac{24}{10} \right) \text{ or } \]

\[(BDC =) 67.4 \text{ or } 67.3\ldots \]

Fully correct method for \(BDA\) or \(\text{ADB} =) 54.6 \]

54.6” + “67.4”

\[122 \]

M1 (indep)

A1 awrt 122

Total 4 marks
(a) \[
\begin{array}{c|c|c|c}
 x & 1.5 & 3 & 6 \\
 y & 3.75 & 3 & 3.75 \\
\end{array}
\]

B2 all 3 correct
If not B2 then B1 for 2 correct

(b) Graph
M1(ft if at least B1 scored in (a)) for at least 5 points plotted correctly ± ½ square
A1 for correct curve between \(x = 1 \) and \(x = 6 \)

(c) \(y = 3.5 \) drawn
M1
1.7, 5.3
A1 ft graph which gives at least 2 roots
NB: Sight of just one correct solution with no method shown gets M0 A0

Total 6 marks
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>(a)</td>
<td>−1 or 2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td>B1 for −1 or for 2 or both</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c)</td>
<td>M1 for correct method to clear fractions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 (x - 2) + x + 1 = 0 oe or 4x - 5 = 0</td>
<td>M1 for clearing fractions and obtaining a correct equation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5/2 oe</td>
<td>A1 (depending on at least M1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total 5 marks</td>
<td></td>
</tr>
</tbody>
</table>

18	41.5 or 42.5 or 24.5 or 23.5 or 14.5 or 13.5	B1
		M1
		A1 accept \(\frac{83}{11} \) or 7.55 or 7.54 (depending on M1)
		NB: Answer must come from correct working
		Total 3 marks
	Any 2 of	
	50 ÷ 20(=2.5) , 90 ÷ 30(=3), 120 ÷ 50(=2.4), 160 ÷ 200(=0.8)	M1 for any two correct fd calculations can be implied by any **two** correct frequency densities or any two correct bars
	Any 3 of 2.5, 3, 2.4, 0.8	3
	Correct histogram	A1 for any 3 FDs correct
(can be implied by at least 3 correct bars)		
	Correct histogram	
	SC : B2 All four bars of correct width with heights in the correct ratio	
(B1 for 3 bars of correct width with heights in the correct ratio) |

Total 3 marks
<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>[\frac{1}{6} \times \frac{1}{6}]</th>
<th>2</th>
<th>M1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A1 or 0.0277… rounded or truncated to 2 or more sig figs</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td>[\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}]</td>
<td>3</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[\frac{25}{216}]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[\frac{25}{72}]</td>
<td></td>
<td>A1 or 0.34722… rounded or truncated to 2 or more sig figs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total 5 marks</td>
</tr>
</tbody>
</table>

	(a)	Angle \(CBD = 32^\circ \) or angle \(ABC = 90^\circ \) or angle \(DBO = 90^\circ \) or angle \(OBA = 32^\circ \) or angle \(BOD = 2 \times 32 = 64 \) (where \(O \) is the centre of the circle)	3	M1 angle must be clearly identified either on diagram or in working
		(Angle \(BDC \) =) \(180^\circ - 32^\circ - 32^\circ - 90^\circ \)		M1 for a complete method
			26	A1
				Total 3 marks
22. \(A = KT^2 \) and \(A = kr^3 \) or
\[
T^2 = \frac{k}{K} r^3 \quad \text{or} \quad T^2 = pr^3
\]
\[
r^3 = \frac{K}{k} T^2 \quad \text{or} \quad r^3 = qT^2
\]

| \(47^2 = \frac{k}{K} 0.25^3 \) \(\text{or} \) \(47^2 = m0.25^3 \) \(\text{or} \) \(47^2 \div 141376 \) \(\text{or} \)
| \(47^2 \) \(\text{or} \) \(47^2 \div 141376 \) \(= 141376 \) \(= 7.07(3...) \times 10^{-6} \)
| \(0.25^3 \) \(\text{or} \) \(= \frac{1}{141376} \) \(\text{or} \) \(0.015625 \) \(\text{or} \) \(= 0.25^3 \)

| \((r^3) = \frac{0.25^3}{47^2} \times 365^2 \) \(\text{or} \) \(365^2 \div 141376 \) \(\text{or} \) \(365^2 \times 7.07(3...) \times 10^{-6} \) \(\text{or} \) \(\times \text{7.07(3...) \times 10^{-6}} \) \(\text{or} \) \(0.942... \)
| \(0.980 \) \(\text{or} \) \(0.980 \) \(\text{or} \) \(0.942... \)

| 4 | M1 condone the same constant used in both equations
| \(\text{NB: Values may be substituted in place of the variables} \) | M1
| \(\text{NB: 2209 may be seen in place of 47^2} \) | M1
| \(\frac{1}{64} \) \(\text{or} \) \(0.015625 \) may be seen in place of 0.25^3 | M1
| A1 awrt 0.980 accept 0.98 | Total 4 marks
Let \(O \) be the centre of the square.
\[(AC^2) = 10^2 + 10^2 = 200\] or
\[(AC) = \sqrt{200} \text{ oe or} \]
\[(AC) = 14.1(4...)\]

\[(AO) = \frac{1}{2} \sqrt{200} \text{ oe or} \]
\[(AO) = 7.07(1...) \text{ or} \]
\[(AO) = 7.05\]

\[\left(VO^2 = 12^2 - \left(\frac{1}{2} \sqrt{200}\right)^2 \right) = 94 \text{ OR} \]
Angle \(VAC \) is \(\cos^{-1}\left(\frac{7.07}{12}\right) = 53.896^\circ \)
AND \(12 \sin 53.896 = 9.695(...) \)

Alternative method
Let \(M \) be the midpoint of a side of the square
\[VM^2 = 12^2 - 5^2 = 119\] or
\[VM = \sqrt{119} = 10.9(...)\]
\[VO^2 = 119 - 5^2 = 94 \text{ or} \]
\[VO^2 = 10.9^2 - 5^2 \text{ oe} \]

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Let (O) be the centre of the square. ((AC^2) = 10^2 + 10^2 = 200) or ((AC) = \sqrt{200} \text{ oe or}) ((AC) = 14.1(4...)) ((AO) = \frac{1}{2} \sqrt{200} \text{ oe or}) ((AO) = 7.07(1...) \text{ or}) ((AO) = 7.05) (\left(VO^2 = 12^2 - \left(\frac{1}{2} \sqrt{200}\right)^2 \right) = 94 \text{ OR}) Angle (VAC) is (\cos^{-1}\left(\frac{7.07}{12}\right) = 53.896^\circ) AND (12 \sin 53.896 = 9.695(...))</td>
<td>9.70</td>
</tr>
<tr>
<td></td>
<td>Alternative method Let (M) be the midpoint of a side of the square (VM^2 = 12^2 - 5^2 = 119) or (VM = \sqrt{119} = 10.9(...)) (VO^2 = 119 - 5^2 = 94 \text{ or}) (VO^2 = 10.9^2 - 5^2 \text{ oe})</td>
<td>9.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>24 (a)</td>
<td></td>
<td>M1</td>
</tr>
<tr>
<td>(\vec{PQ} = 6b - 6a) or (\vec{QP} = 6a - 6b) or (\overrightarrow{OX} = \overrightarrow{OP} + \overrightarrow{PX}) oe or (\overrightarrow{OY} = \overrightarrow{OQ} + \overrightarrow{QX}) oe or (6a + \frac{1}{2} (6b - 6a)) or (6b + \frac{1}{2} (6a - 6b))</td>
<td>(3a + 3b)</td>
<td>A1 or 3(a + b)</td>
</tr>
<tr>
<td>(b)</td>
<td>eg.</td>
<td>M1 for a complete method ft from (a)</td>
</tr>
<tr>
<td>(\left(\overrightarrow{QY} = \right) \vec{QO} + \frac{2}{3} \overrightarrow{OX}) oe or (\left(\overrightarrow{QY} = \right) -6b + \frac{2}{3} (3a + 3b))</td>
<td>(2a - 4b) or (2(a - 2b))</td>
<td>A1 ft from (a)</td>
</tr>
</tbody>
</table>

Total 4 marks