GCSE MATHEMATICS
Higher Tier Paper 3 Calculator

Exam Date Morning Time allowed: 1 hour 30 minutes

Materials
For this paper you must have:
• a calculator
• mathematical instruments.

Instructions
• Use black ink or black ball-point pen. Draw diagrams in pencil.
• Answer all questions.
• You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
• Do all rough work in this book. Cross through any work you do not want to be marked.

Information
• The marks for questions are shown in brackets.
• The maximum mark for this paper is 80.
• You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

Advice
• In all calculations, show clearly how you work out your answer.
Answer all questions in the spaces provided.

1. Circle the multiplier that reduces a quantity by 12.5% [1 mark]
 - 0.125
 - 0.875
 - 12.5
 - 87.5

2. Simplify \((x^6)^3\) [1 mark]
 - \(x^2\)
 - \(x^9\)
 - \(x^{18}\)
 - \(x^{216}\)

3. Circle the quadratic sequence. [1 mark]
 - 2 8 14 22
 - 1 8 27 64
 - 2 4 8 16
 - 1 4 9 16
4. The bearing of A from B is 235°.

Circle the bearing of B from A.

[1 mark]

055° 125° 145° 325°
The direct route between two airports A and B is 450 km

An aircraft leaves A at 09.15
It arrives at B at 10.55

5 (a) Work out the average speed of the aircraft.
Assume the aircraft travelled the direct route.

Answer \(\text{km/h} \)

5 (b) In fact the aircraft did not travel the direct route.

How does this affect the average speed?

Tick a box

- Faster
- Slower
- The same

Give a reason for your answer.
The diagram shows the results, to the nearest percentage, of a survey of 1000 motorists.

Driverless cars

- **Good idea**: 20%
- **Bad idea**: 34%
- **Not sure**: 45%

Source: IAM Roadsmart survey April 2016

Work out the **largest** possible number of motorists who thought driverless cars were a good idea.

[2 marks]

Answer ____________________________

Turn over for the next question
7 (a) Write these numbers in ascending order.

9812 \(9.82 \times 10^2\) \(9.81 \times 10^3\)

[1 mark]

Answer

7 (b) Jon is multiplying two numbers given in standard form.

\[2 \times 10^6 \times 3 \times 10^7 = (2 \times 3) \times 10^{(6 + 7)}\]

\[= 6 \times 10^{13}\]

He says,

“So, for any numbers
\[a \times 10^b \times c \times 10^d = (a \times c) \times 10^{(b + d)}\]

which will always be in standard form.”

Is he correct that \((a \times c) \times 10^{(b + d)}\) will always be in standard form?

Tick a box.

\[\square \quad \text{Correct} \quad \square \quad \text{Not correct}\]

Show working to support your answer.

[2 marks]
After landing, an aircraft is delayed in reaching its parking stand.

The aircraft uses 11.4 kg of fuel for each minute of delay.

1 litre of fuel is 0.82 kg

Fuel costs 65p per litre.

Work out the cost of a delay of 8 minutes.

[4 marks]

Answer £ ___________________________
9 The diagram shows a cuboid and its diagonal.

The formula to work out the length of the diagonal in centimetres is

\[\text{Length of diagonal} = \sqrt{a^2 + b^2 + c^2} \]

9 (a) Work out the length of the diagonal when \(a = 8 \), \(b = 3 \) and \(c = 2 \)

Give your answer to 2 significant figures.

[3 marks]

Answer \[\text{cm} \]
9 (b) Work out the length of the diagonal in terms of a
when $b = 2a$ and $c = 2a$

[3 marks]

Answer ____________________________ cm

10 Eva writes $4^2 \times 4^2 \times 4^2 = 4^2 \times 2 \times 2$

$= 4^8$

What is wrong with her method?
Give the correct answer.

[2 marks]

Answer ____________________________

turn over for the next question
The diagram shows two circular arcs with centre O.

How much longer is the big arc than the small arc?

Give your answer to 1 decimal place.

[4 marks]

Answer ___________________________ cm
12 Solve the simultaneous equations

\[3x + 2y = 10 \]
\[3x - y = 13 \]

[3 marks]

Answer \(x = \) \(y = \)

Turn over for the next question
13

P is the principal amount.
r is the interest rate over a given period.
n is the number of times that the interest is compounded.

Circle the expression for the total accrued using compound interest.

[1 mark]

$P \left(1 + \frac{r}{100} \right)^n$

$P + \left(\frac{r}{100} \right)^n$

$P \left(1 + \frac{n}{100} \right)^r$

$P \left(1 + \frac{rn}{100} \right)$

14

Rearrange the formula $v^2 = u^2 + 2as$ to make s the subject.

[2 marks]

Answer

Work out an approximate solution to \(x^3 + 3x - 1 = 0 \)

Use the iteration \(x_{n+1} = \frac{1}{x_n^2 + 3} \)

Start with \(x_1 = 1 \)

Give your answer to 2 decimal places. [3 marks]

Answer ________________________________

Turn over for the next question
16 (a) Here is a circle, centre O.

Work out the size of angle x.
Circle your answer.

[1 mark]

26° 72° 84° 90° 104°
16 (b) M, N and S are points on circle C_1

RST is a tangent to C_1

Circle C_2 passes through the centre O, S and M of circle C_1

Prove that SM is not a diameter of circle C_2

Give reasons for your answer.

[3 marks]
17 The density of steel is between 7750 kg/m3 and 8050 kg/m3

$1000 \text{ kg/m}^3 = 1 \text{ g/cm}^3$

A solid metal object has a volume of 1430 cm3
The mass of the object is 9.6 kg

Is it possible that it is made of steel?

Tick a box.

- [] Definitely steel
- [] Might be steel
- [] Definitely not steel

You must show your working.

[3 marks]
The following data is about the same types of plants.

Some of the plants are treated with plant food.

<table>
<thead>
<tr>
<th>Mean height (cm)</th>
<th>Interquartile range (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>30.2</td>
</tr>
<tr>
<td>Treated</td>
<td>35.1</td>
</tr>
</tbody>
</table>

Compare the untreated plants and treated plants. [2 marks]

Comparison 1

Comparison 2

Turn over for the next question
19 Here is a box plot.

Test scores

19 (a) Circle the value of the range. [1 mark]

33 36 50 80

19 (b) Circle the value of the median. [1 mark]

38 55 62 64

19 (c) Circle the value of the interquartile range. [1 mark]

34 36 38 50 62
A knife is twice the cost of a spoon.
8 spoons and 12 knives cost £46.08

Work out the cost of 1 knife.

[5 marks]

Answer £ ________________________

Turn over for the next question
The diagram shows an empty container of height 21 cm. The container consists of a cylinder on a frustum of a cone.

Water is added to the container at a constant rate for 11 seconds. The sketch graph shows the depth of the water as the container fills. The graph is a curve for the first 6 seconds and a straight line for the next 5 seconds.
21 (a) Circle the height of the cylinder. [1 mark]

8 cm 10.5 cm 13 cm 21 cm

21 (b) Work out the rate of increase of the depth of the water between 6 seconds and 11 seconds. State the units of your answer. [3 marks]

Answer ________________________

Turn over for the next question
22 (a) Amy drew this histogram to show the times taken to complete a task.

Give one reason why it is misleading.

[1 mark]
22 (b) Here is another histogram showing the times taken to complete another task.

![Histogram showing times taken to complete a task]

Estimate the percentage of people who took less than 30 seconds. [5 marks]

Answer ______________________________ %
The diagram shows a rectangle split into three triangles.

The total shaded area is 7.5 cm\(^2\)

Work out the value of \(x\).

Give your answer to 1 decimal place.

[5 marks]

Answer _____________________________
This 3D diagram represents a paperweight. The horizontal base ABC is a right-angled triangle. CT is vertical.

Angle $ACB = 36^\circ$, $BC = 13.3 \text{ cm}$ and $CT = 9.6 \text{ cm}$.

Work out the size of the angle between AT and the horizontal base.

[4 marks]

Answer ______________ degrees
The number of bacteria, \(N \), after \(t \) hours, of an experiment is given by

\[N = A \times 2^{\frac{t}{4}} \]

where \(A \) is constant.

25 (a) At the start of the experiment there are 250 bacteria.

Show that \(A = 250 \) \([1 \text{ marks}] \)

Answer

25 (b) How long is it before the number of bacteria doubles? \([2 \text{ marks}] \)

Answer \(\) hours

25 (c) Megan works out that there will be more than 1 million bacteria after 2 days.

Is she correct?

You must show your working. \([2 \text{ marks}] \)

Answer

END OF QUESTIONS